11 research outputs found

    Practical Automated Partial Verification of Multi-Paradigm Real-Time Models

    Get PDF
    This article introduces a fully automated verification technique that permits to analyze real-time systems described using a continuous notion of time and a mixture of operational (i.e., automata-based) and descriptive (i.e., logic-based) formalisms. The technique relies on the reduction, under reasonable assumptions, of the continuous-time verification problem to its discrete-time counterpart. This reconciles in a viable and effective way the dense/discrete and operational/descriptive dichotomies that are often encountered in practice when it comes to specifying and analyzing complex critical systems. The article investigates the applicability of the technique through a significant example centered on a communication protocol. More precisely, concurrent runs of the protocol are formalized by parallel instances of a Timed Automaton, while the synchronization rules between these instances are specified through Metric Temporal Logic formulas, thus creating a multi-paradigm model. Verification tests run on this model using a bounded validity checker implementing the technique show consistent results and interesting performances.Comment: 33 pages; fixed a few typos and added data to Table

    Parametric Identification of Temporal Properties

    Get PDF
    Given a dense-time real-valued signal and a parameterized temporal logic formula with both magnitude and timing parameters, we compute the subset of the parameter space that renders the formula satisfied by the trace. We provide two preliminary implementations, one which follows the exact semantics and attempts to compute the validity domain by quantifier elimination in linear arithmetics and one which conducts adaptive search in the parameter space

    S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems ⋆

    No full text
    Abstract. S-TaLiRo is a Matlab (TM) toolbox that searches for trajectories of minimal robustness in Simulink/Stateflow diagrams. It can analyze arbitrary Simulink models or user defined functions that model the system. At the heart of the tool, we use randomized testing based on stochastic optimization techniques including Monte-Carlo methods and Ant-Colony Optimization. Among the advantages of the toolbox is the seamless integration inside the Matlab environment, which is widely used in the industry for model-based development of control software. We present the architecture of S-TaLiRo and its working on an application example.

    A Taylor Function Calculus for Hybrid System Analysis: Validation in Coq

    No full text

    Robustness of temporal logic specifications

    No full text
    In this paper, we consider the robust interpretation of metric temporal logic (MTL) formulas over timed sequences of states. For systems whose states are equipped with nontrivial metrics, such as continuous, hybrid, or general metric transition systems, robustness is not only natural, but also a critical measure of system performance. In this paper, we define robust, multi-valued semantics for MTL formulas, which capture not only the usual Boolean satisfiability of the formula, but also topological information regarding the distance, ε, from unsatisfiability. We prove that any other timed trace which remains ε-close to the initial one also satisfies the same MTL specification with the usual Boolean semantics. We derive a computational procedure for determining an under-approximation to the robustness degree ε of the specification with respect to a given finite timed state sequence. Our approach can be used for robust system simulation and testing, as well as form the basis for simulation-based verification

    Parameter Synthesis Through Temporal Logic Specifications

    No full text
    Parameters are often used to tune mathematical models and capture nondeterminism and uncertainty in physical and engineering systems. This paper is concerned with parametric nonlinear dynamical systems and the problem of determining the parameter values that are consistent with some expected properties. In our previous works, we proposed a parameter synthesis algorithm limited to safety properties and demonstrated its applications for biological systems. Here we consider more general properties specified by a fragment of STL (Signal Temporal Logic), which allows us to deal with complex behavioral patterns that biological processes exhibit. We propose an algorithm for parameter synthesis w.r.t. a property specified using the considered logic. It exploits reachable set computations and forward refinements. We instantiate our algorithm in the case of polynomial dynamical systems exploiting Bernstein coefficients and we illustrate it on an epidemic model
    corecore